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Universal Structure Modeling (USM), intro-
duced herein, offers an exploratory comple-
ment to confirmatory structural equation mod-
eling methods such as covariance-based
structural equation modeling (e.g., LISREL)
and partial least squares. Because USM
combines the iterative methodology of partial
least squares with a Bayesian neural network
approach involving a multilayer perceptron
architecture, it enables researchers to identify
“hidden” structures within their models and
highlights theoretically unproposed model
paths, nonlinear relations among model vari-
ables, and interactive effects. Using synthetic
data, the authors demonstrate USM’s ability
to identify linear and nonlinear relationships
and provide evidence that the method does
not overfit the original data. They also find
hidden paths, nonlinearity, and interactions in
two structural models published in the Journal
of Marketing, which illustrates the practical
relevance of USM. They provide recommen-
dations for researchers regarding in which
conditions and how USM should be used.
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1. A New Perspective on Structural Modeling
in Marketing

A large body of research in leading marketing journals
uses structural equation modeling (SEM) to estimate
structural models with three or more latent variables
simultaneously. The two most frequently applied SEM
methods are covariance-based structural equation model-
ing (CVSEM), made popular through Jöreskog and
Sörbom’s (1999) LISREL program, and the component-
based partial least squares (PLS) approach originated by
Wold (1989). More than 180 articles published in the
Journal of Marketing, Journal of Marketing Research,
and Journal of the Academy of Marketing Science
applied SEM between 1995 and 2005, with 89% of these
publications using CVSEM and 11% PLS. Today, SEM
can be considered a methodological paradigm in its own
right within the marketing discipline–a dominant logic
for defining and addressing complex research problems.

Although both CVSEM and PLS offer widely recog-
nized, powerful methods for testing a specific model, the
early stage of theory development in marketing often
prevents researchers from excluding the possibility that
alternative models might represent the true relations
among model constructs more effectively (Rust and
Schmittlein 1985). Taking a philosophy of science per-
spective, the empirical ability to support (i.e., to not fal-
sify) a certain model structure always requires the elimi-
nation of alternative explanations. While SEM research-
ers are recommended to compare the proposed model
structure with alternative models (Bollen 1989; Cudeck
and Browne 1983), in most empirical applications this
heuristic approach does not rule out the existence of
other models which are equally (or even more) powerful
than the proposed one. As Rust and Schmittlein (1985,
p. 20) state, “it is generally the case that two, three, or
several such models may be constructed.” In practical
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applications, alternative models often seem to be con-
structed primarily to demonstrate the superiority of the
proposed model instead of constituting serious alterna-
tive approaches (e.g., De Wulf, Odekerken-Schröder, and
Iacobucci 2001; Morgan and Hunt 1994). In other words,
while comparing a proposed model with certain alterna-
tive models is certainly helpful (Bollen 1989; Cudeck
and Browne 1983), philosophy of science requires
researchers to identify all possible model structures and
to demonstrate the superiority of the theoretically pro-
posed model over its alternatives, something that can
hardly be achieved by CVSEM. Similarly, the widely
available software for CVSEM (e.g., LISREL, AMOS,
EQS) and PLS (e.g., PLS Graph, SmartPLS) remains
limited to linear relations among constructs and does not
test for interactions among model variables that have not
been theoretically proposed by the researchers. Accord-
ingly, alternative models with theoretically unproposed
nonlinear paths and interactions systematically get over-
looked by CVSEM and PLS methods.1

1 We use the term “theoretically unproposed” to acknowledge that
nonlinear relations and interactions that are known in advance
could be considered when testing a structural marketing model
with CVSEM and PLS. We focus on those interactions and nonlin-
ear relations that are not hypothesized by a researcher and, there-
fore, are not part of the theoretical model.

This exclusion is
important because both nonlinear effects (Agustin and
Singh 2005; Oliva, Oliver, and MacMillan 1992) and
interactions (Chandrashekaran et al. 1999; Kohli, Sher-
vani, and Challagalla 1998; Nowlis and Simonson 1996;
Rao, Qu, and Rueckert 1999) are common phenomena in
marketing. Philosophy of science would demand a model
testing approach that points researchers to the existence
of such interaction effects and helps them to gain undis-
torted path coefficients.

Overcoming these limitations of traditional SEM meth-
ods requires applying a more exploratory approach that is
not limited to testing a small (and often arbitrarily
chosen) number of structural models but rather provides
insight into any possible relationship among the variables
of a structural model. Ideally, such an exploratory
approach takes into account the potential existence of the-
oretically unproposed nonlinear relations and interactions
among model constructs, in addition to unhypothesized
model paths. This manuscript introduces Universal Struc-
ture Modeling (USM) as a method that enables research-
ers to apply such an exploratory approach to SEM and
thus helps them identify different kinds of “hidden” struc-
tures instead of testing a limited set of rival model struc-
tures. Specifically, the USM approach combines the itera-
tive component-based approach of PLS with a Bayesian
neural network involving a multilayer perceptron archi-
tecture and points researchers toward theoretically unpro-
posed (1) paths among model constructs, (2) nonlinear
relations between model constructs, and (3) interactions
among model constructs. As a result, USM enables
researchers to improve their theoretical models and rule
out the existence of superior alternatives.

The remainder of this manuscript is structured as fol-
lows: After presenting the USM algorithm and its
assumptions, we explore the power of USM with two
sets of synthetic data (one involving nonlinear relations
and interactions, the other linear relations only). We then
apply USM to two models from Journal of Marketing
articles and compare the results with CVSEM and PLS to
demonstrate the method’s practical relevance for market-
ing phenomena. The findings suggest recommendations
for researchers regarding in which conditions and how
USM should be used to test structural models in a mar-
keting context.

2. The universal structure modeling approach

Universal Structure Modeling builds on the iterative PLS
approach for testing structural models but substitutes its
linear least squares regression element with a universal
regression method, namely, a Bayesian neural network.2

2 Universal regression methods, given sufficient parameterization,
can model any kind of function (Rojas 1996). Examples of these
regression algorithms include, in addition to neural networks, pro-
jection pursuit regression, Gaussian processes, and multivariate
adaptive regression splines. We have chosen neural networks
because of their high flexibility and appropriateness for marketing
issues demonstrated in earlier work (e.g., West, Brockett, and
Golden 1997).

Thus, USM solves the black box problem inherent to
universal regression through its combined use of meth-
ods that measure the strength of model paths and proce-
dures that quantify and visualize nonlinear and interac-
tive effects among model constructs. Whereas PLS and
CVSEM both limit model estimation to a priori hypothe-
sized paths, USM represents a more exploratory
approach that also tests for hidden model structures,
namely, theoretically unproposed paths, nonlinearity, and
interaction effects. In Figure 1, we overview the different
phases and steps of the USM parameter estimation pro-
cess, each of which we discuss in detail.

Step 1: Model Specification

As with CVSEM and PLS, a USM model consists of a
structural (or inner) model that contains several latent
variables and their interrelations, as well as a measure-
ment (or outer) model that links each latent variable to a
set of manifest measurement variables. The initial step
of a USM analysis involves creating a structural model
specification matrix S that indicates the relations among
the latent variables of the structural model to be
excluded from the estimation process. Generally,
because USM represents an exploratory approach to
structural model estimation, the model includes all pos-
sible relationships between model variables. Only those
relationships that are known to be wrong (e.g., a path
from phenomenon B to phenomenon A when A took
place before B) should be excluded by assigning values
of 0 in the model specification matrix. If cross-sectional
data appear in the model, researchers must decide a
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STEP 2: MODEL ESTIMATION 

Determine specification matrix

Determine measurement model

Estimate starting values for LV via linear PCA

Estimate a MLP for each LV with BNN

Estimate new values for LV with MLP

Estimate factor loadings with RA

Use factor loadings to estimate new values for LV

Check stop criterion
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STEP 1: MODEL SPECIFICATION 

STEP 3: POST PROCESSING 

Determine impact size (OEADs)

Calculate fit measure (GoF and R2)

Test for linearity and determine path coefficients

Quantify interaction strength (IEs) and plot interactions

Estimate significance of parameters via bootstrapping

Criterion is met

Figure 1: Phases and Steps of a USM Analysis

Note: LV = Latent Variables; PCA = Principal Component Analysis;
MLP = MultiLayer Perceptron; BNN = Bayesian neural networks;
RA = regression analysis; OEAD = Overall Explained Absolute
Deviation; GoF = Goodness of Fit; IE = Interactive Effect.

priori about the direction of model paths and exclude
reverse effects.3

3 Please note that this in some ways limits USM to explore only
those relationships which are consistent with the assumed path
direction.

In USM, the endogenous latent variables y are defined as
functions of one or more other latent variables y that can
be exogenous or endogenous in the structural model.
Formally, the estimator ŷj of the endogenous latent vari-
able yj is defined as the output of a multilayer perceptron
(MLP) architecture, as shown in Equation 1:4

4 Regarding parameterization, we started all calculations in this
research with ten hidden units and one hidden unit layer. This is an
arbitrary choice which we chose based on our experience with the
method. Please note that the choice of the number of hidden units
is not a crucial question in the Bayesian framework, as the ASP
mechanism automatically decreases the number of hidden units to
the required level. Consequentially, in our empirical studies
reported in this paper, ten units led to literally the same results as
20 units, so we chose 10 units to save calculation time.

ŷj = fAct2

⎛

⎝h=1

H

Σ wh · fAct1

⎛

⎝i=1

I

Σ wih · Si
j · yi + b1h

⎞

⎠
+ b2

⎞

⎠
, (1)

where fAct1 is the logistic sigmoid activation function

fAct1(Term) =
1

1 + e–Term of the hidden neural units, and fAct2

is the linear activation function of the output neural unit.
Specifically, fAct2 is a unity function required in MLP net-
works if the dependent variable is metric (Bishop 1995).
In turn, H is the number of hidden neural units, I is the
number of latent input variables y, w are the weights, and
b are the bias weights. In addition, Si

j is the a priori like-
lihood that a variable i influences another variable j.5

5 Our discussion of USM focuses on metric output units, which is
the traditional scale format for structural models. Although it is
possible to run USM with nonmetric (i.e., dichotomous) output
units, this application is beyond the scope of this manuscript.

Si
j

is set to 1 for all variables that affect j in the model speci-
fication matrix and 0 for other variables. The sigmoid
activation function fAct1 is approximately linear for a cer-
tain range of values, namely, very small weight parame-
ters wih in Equation 1 (Ripley 1996).

In USM, the measurement model defines a latent vari-
able yi (or, more precisely, its estimator ŷi) as a linear
combination of its indicators:

ŷi =
m=1

Mi

Σ fm · xm + ƒ0, (2)

where x are the values of Mi measurement variables that
determine ŷi, fm are factor loadings, and ƒ0 is the constant
term of the function. Although the USM approach in
general allows measurement model relations to be non-
linear, the nonlinear representation of constructs by a set
of items further would increase the method’s complexity
and impede comparisons of the USM structural model
results with other methods. Accordingly, we limit nonlin-
ear relations to the structural model in USM in this man-
uscript.

Step 2: Model Estimation

As with PLS, structural and measurement models get
estimated simultaneously in USM through an iterative
estimation process. For USM, the estimation process
starts with values for the latent variables derived from
linear principal component analysis (instead of arbitrary
values, as in PLS, mainly to save time) and estimates the
paths between the latent variables using a Bayesian
neural network involving the MLP architecture (Minsky
and Papert 1988; Ripley 1996). We use the evidence
framework for MLP architectures introduced by MacKay
(1992) for parameter estimation, which ensures effective
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weights and input pruning to detect irrelevant paths and
prevent overfitting. Specifically, USM estimates the
neural network by minimizing the error function E for
each endogenous variable i of the structural model, with
E being the overall error of the respective variable’s
neural network:

Ei = β ·
n=1

N

Σ (ŷt–1,n
i – ŷt,n

i )2 +
h=1

H

Σ α t,h ·
p=1

P

Σ wph
2 , (3)

where n is an index for the individual cases, N is the
number of cases included in the estimation, and p is an
index for the weights w. In addition, ŷt

i is the conditional
estimate of the latent variable i in the current estimation
round t, as calculated from the structural model by the
Bayesian neural network, and ŷt–1

i is the estimate of the
previous iteration for this latent variable, derived from
the measurement model. Finally, α h and β are hyperpa-
rameters that limit the space of possible solutions (i.e.,
degrees of freedom) and prevent overfitting of the model.
Practically, parameters that do not contribute substan-
tially to explaining the dependent variable’s variance are
removed from the estimation process (MacKay 1995).
The hyperparameters α h and β get computed in every
learning iteration, as described in Equations 4 and 5:

α h =
γ

2
n=1

N

Σ wnh
2

, and (4)

β =
N – γ

2
n=1

N

Σ (yn
i – ŷn

i )2

, (5)

where N is the number of cases and γ =
p=1

P

Σ λ p

λ p + α LI–1

.

Finally, λ p are the eigenvalues of the Hessian matrix of
the error function (see equation 3), and α LI–1 is the hyper-
parameter α from the previous learning iteration (LI).

In contrast to weighted decay and ridge regression, the
evidence framework is not based on heuristics but on a
systematic statistical approach with an inherent logic
(for a detailed discussion, see Bishop 1995, p. 385 ff.).
We use the RPROP algorithm, suggested by Riedmiller
and Braun (1993), to minimize the overall error E.
RPROP is a variation of the basic back-propagation
algorithm that changes the network parameters in the
direction in which the overall error E declines (also
referred to as “negative gradient”). We employ a boos-
ting (i.e., Committee-of-Networks) approach to generate
stable results with 30 replications (Bishop 1995)6

6 A weighted mean of the output of all Committee-of-Network solu-
tions performs well on validation data (Bishop 1995, p. 364). We
employ boosting since backpropagating MLPs start with random
weights and never stop with exactly the same solution, as they per-
form a search on an error surface with many local optima. This
issue may be of theoretical, but hardly of practical importance.

by
averaging 30 estimates of ŷi.7

7 Please note that, conceptually, USM is not limited to the use of the
MLP architecture; it also could run with alternative approaches
such as Gaussian processes.

The output of the neural network results in improved
scores for the latent variables. These new scores then
provide input for calculating the weights of the measure-
ment model, which we need to generate the next round of
latent variable scores. The concrete procedure in this step
differs between reflective and formative measurement
scales (Fornell and Cha 1994; Jarvis, MacKenzie, and
Podsakoff 2003). In the case of reflective items, the new
latent construct estimates emerge from a series of bivari-
ate regression analyses (with observed scores as depen-
dent variables), whereas we use multivariate regression
analysis for formative scales (with the latent construct
score as dependent variable). In both cases, the weighted
regression coefficients transform into new estimates for
the latent variable ŷt

i, which substitute for the previous
latent variable estimations ŷt–1

i . The process of iteratively
calculating inner and outer model estimates continues
until the differences between the latent variable scores
calculated by the inner model and those by the outer
model are minimal. Specifically, we stop the estimation
process when the divisor of the absolute change in the
latent variable scores summed across all model con-
structs and the sum of latent variable scores falls below
1%.

The iteration process aims to minimize residual vari-
ance (instead of maximizing a theoretically derived
function, as is the case with CVSEM), and the different
kinds of residual variables to be minimized (for endoge-
nous latent and measurement variables) are partitioned
into estimable subsets. In other words, one part of the
parameters is held fixed (and is assumed to be known),
whereas the other part gets estimated. This step
describes basically the same procedure as PLS, so we
can assume the iterative process converges, though con-
vergence has not been formally proven (Fornell and
Cha 1994).

Step 3: Post-Processing

After determining the final estimates for the latent vari-
ables, the next step is to investigate the strength, signifi-
cance, and shape of the relations among the latent con-
structs of the inner model. Therefore, we calculate vari-
ance explanation parameters, coefficients of determina-
tion, the model’s goodness of fit, path coefficients (for
linear relations), and interaction effects.

Overall Explained Absolute Deviation. Path coefficients
(measures of the strength of the relation between two
latent variables) can be calculated only when the rela-
tionship between two variables is linear (note that path
coefficients describe the additive influence of one vari-
able on another). Therefore, we require a more general
criterion for the strength of construct interrelations.8

8 Another way to compare the results would be to use measures of
prediction accuracy (e.g., MAE, hit rates). However, as both USM
and CVSEM/PLS aim at testing, not prediction, we consider these
measures as inappropriate.

We
draw on Zimmermann (1994) and introduce the Overall
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Explained Absolute Deviation (OEAD) as a measure of
latent variable i’s share of variance which is explained by
latent variable j in the structural model. We formally
define OEAD in Equation 6:

OEADj
i = n=1

N

Σ ŷn
i – ƒn

i (y1,...,yj,...,yI)
ŷn

i –
–̂
yn

i

N
, (6)

where fi(y1,...,yj,...,yI) is the outcome of the neural net-
work function (Equation 1) when the mean of yj (termed
yj) serves as an input variable. In other words, as the
numerator of Equation 6 shows, we calculate for each
case how the estimates of a latent variable i change if we
exclude the latent variable j from the model. This is done
by fixing the input of variable j to its mean value, or yj.
We normalize the effect by dividing it by the number of
cases. Because the effect size of a latent variable for any
other variable does not depend on the direction of this
effect, we use the absolute value (the direction must be
taken from the graphic depiction of the respective effect).
We calculate effect sizes for each case, and OEAD repre-
sents the mean of the case-specific values. Because we
can calculate OEAD for all kinds of relationships in
structural models, including linear ones, we are able to
compare USM structural model results with results from
CVSEM and PLS. If a relationship between two latent
variables is linear, USM also reports path coefficients by
isolating the additive portion of a relationship. We discuss
this feature formally in the context of interaction effects.

Coefficient of determination and goodness of fit. In addi-
tion to OEAD as a measure of relationship strength
between two latent variables, USM provides R2 as the
total variance of an endogenous latent variable explained
by all other model constructs. Furthermore, because
USM does not aim to fit empirical and theoretical covari-
ance matrices and therefore does not allow for a formal
test of the “appropriateness” of a proposed model, we
draw on the goodness-of-fit (GoF) criterion suggested by
Tenenhaus and colleagues (2005) to compare the overall
model fit of USM with CVSEM and PLS:

GoF =
⎛
⎝
1
M i=1

IΣ Mi · communalityi

⎞
⎠

· R2, (7)

where I is the number of latent constructs in the model,
M is the total number of measurement variables in the
model, and Mi is the number of measurement variables
for the construct i. Communality refers to the regression
coefficient between an item and its latent variable, and R2

is the mean explained variance of all endogenous latent
variables of the structural model.

Nonlinear shapes, path coefficients, and interaction
effects. To identify an additive (and potentially nonlin-
ear) effect of the latent variable j on yi, we calculate an a-
score for each individual case n (Plate 1998):9

9 As it is not possible to interpret the weights from neural network
estimations directly (e.g., Kumar, Rao, and Soni 1995, p. 262),
additional techniques have to be used.

aj
i = fi(y1,...yj,...,yn) – fi(y1,...yj,...,yI), (8)

where aj
i is the change in yi caused by the additive effect

of yj, fNN again is the neural network function (see Equa-
tion 1), and y1 to yn are the latent input variables of the
structural model. The second term on the right side of
Equation 8 represents the network output (i.e., ŷi) when
variable j is absent (we use the mean value over all cases,
yj, to fix j at an arbitrary value). The difference between
the first and second terms on the right side represents the
change in yi that yj provides in an additive manner.

We test the linearity of this additive effect of yj on yi for
each relationship by estimating a series of polynomial
regressions of yj on aj

i (Hastie and Tibshirani 1990).
When doing that, we increase the number of parameters
of the polynomial regression stepwise, an approach
referred to as a “growing algorithm” (Bishop 1995, p.
353). If only linear effects are considered (i.e., one
degree of freedom), polynomial regression is equivalent
to linear regression. We assume that a relationship
between two latent constructs is linear if a regression
model with two degrees of freedom (i.e., quadratic
model) shows lower prediction performance for valida-
tion data than does the linear model. This comparison
relies on a jack-knifing cross-validation procedure
(Bishop 1995). If we find a linear relationship, we take
the standardized regression parameter β from the poly-
nomial regression with one degree of freedom and inter-
pret it as a path coefficient, similar to PLS and
CVSEM.10

10 Because USM uses standardized raw data for its calculations, the
USM path coefficients are, by definition, standardized parameters
ranging from +1 to –1. Please note that an effect found to be linear
through the described procedure could also be the result of inter-
action effects; something which can be ruled out by looking at the
respective IE parameters or the graphical representation of the
relationship under scrutiny. Specifically, if an IE parameter is sig-
nificant, the ß parameter can not be interpreted similar to CVSEM/
PLS path coefficients. In this case, the detailed characteristics of
the relationship can be taken from the yj-yj

i plot as well as the yj-
yk-yj

i plots. All linear paths reported in the empirical section of this
paper are “true” linear effects and do not result from interactions.

To measure the interaction effect of two independent
latent variables yj and yk on yi, we calculate a z-score for
each individual case n (Plate 1998):

zjk
i = fi(y1,...yj,...,yk,...,yI) – fi(y1,...yj,...,yk,...,yI), (9)

where z is the change in yi for an individual case caused
by the additive and the interactive effect of yj and yk, and
yj and yk represent the mean values of yj and yk, respec-
tively. The idea behind this equation is that the difference
in latent variable i when both latent variables j and k
simultaneously are fixed to the mean value represents the
interactive effect (Plate 1998). The strength of the inter-
active effect IEjk

i then can be calculated according to
Equation 10:

IEjk
i =

n=1

N

Σ ẑjk
i – âj – âk

ŷ – y
N

, (10)
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where â are the additive scores of a polynomial regres-
sion of y on a (as introduced in equation 8), and ẑ is the
outcome of a universal regression with the two latent
variables j and k as regressors on zjk

i . In other words, the
interaction effect IEjk

i is expressed as the portion of vari-
able i’s explained variance that can be attributed to the
interaction between yj and yk, with IEjk

i = 1 meaning that
the explained variance of i is caused fully by this interac-
tion. Because IE only provides a measure of interaction
strength, not the kind of interaction effect at work, we
visualize the interaction effect by creating a three-dimen-
sional scatter plot, in which yj and yk plot on the x-axis
and the y-axis, respectively, and zjk

i on the z-axis. The
data points are complemented by the surface derived
from the ẑjk

i estimates. We limit our discussion to two-
way interactions in this manuscript, but in principle,
USM can also handle interactions among more than two
variables. The main challenge for such multivariate inter-
actions would be the higher-dimensional graphical repre-
sentation that is needed to interpret the interaction effect
(Soukup and Davidson 2002).

Significance of parameters. Finally, as with PLS and in
contrast to CVSEM, USM does not pose any distribu-
tional assumptions on the data, which prevents us from
testing the significance of its parameters against any kind
of statistical distribution. We therefore test the model
parameters’ statistical significance through a bootstrap-
ping routine (Mooney and Duval 1993). Specifically, we
conduct such tests for all OEADs and IEs, as well as for
the path coefficients and the factor loadings of the mea-
surement model.

3. Comparing USM with CVSEM and PLS:
Similarities and Differences

3.1. Theory Testing vs. Identification of Hidden
Structures

Although in USM the researcher has to, like with
CVSEM and PLS, determine the paths of a structural
model to be included in the estimation process (by fixing
a path to 0), USM is based on a different theoretical per-
spective than traditional SEM methods. While CVSEM
and PLS are basically confirmatory methods in that,
from a philosophy of science perspective, they are
intended to test the “truth” of a structural model (Jöres-
kog 1973), USM is based on the assumption that such a
theory-testing approach is inappropriate for most market-
ing models and that an approach is needed which com-
bines model testing with the identification of structures
and elements that are not theoretically proposed by
researchers. As a consequence, USM requires the
researcher to exclude only illogical paths and therefore
includes all other paths in the estimation. Instead of test-
ing a single model, the proposed model inherently has to
compete with an array of alternative model specifica-
tions. In addition, USM helps researchers to locate other
hidden structures and elements in structural models,

namely nonlinear relations among model variables and
interactions between two or more variables with regard
to another model variable. We believe that gaining
knowledge with regard to these aspects of a structural
model facilitates marketing’s striving towards new
knowledge and the development of general theories.

Hidden paths. While PLS is an exclusively confirmatory
method, as it provides literally no information on the
existence of alternative relations among model elements,
CVSEM software usually reports “modification indices”
which generally describe the effect of deleting or adding
constraints on a model’s chi-square and might be used
for model refinement (Jöreskog and Sörbom 1993).
However, in practice, these indices do provide only lim-
ited insight into the underlying structures and have to be
treated cautiously (Fornell 1987; MacCallum 1986).
USM, in contrast, encourages the researcher to add only
a minimum number of constraints to his/her model. This
procedure simultaneously tests the proposed relations
(i.e., hypotheses), while at the same time searching for
not theoretically proposed relations, which can then be
used for theory development.

Hidden nonlinearity. CVSEM and PLS software test for
linear model paths only. The inclusion of nonlinear
effects can be achieved in these methods by rescaling
certain parts of the raw data (e.g., exponential transfor-
mations), which requires the researcher to know the
“true” course of the nonlinear function in advance
(which is usually not the case). In contrast, USM pro-
vides insight on potential nonlinear structures among the
model variables due to its Bayesian neural network esti-
mation technique. As several relationships of key interest
for marketing have been shown to be of a nonlinear kind
(e.g., Agustin and Singh 2005), USM does integrate such
effects into structural models and, as a consequence, can
help to prevent marketing scholars from drawing wrong
conclusions on the phenomena under scrutiny caused by
otherwise undetected nonlinear relations between these
phenomena.

Hidden interactions. With regard to interactions between
the elements of a structural model, CVSEM and PLS
require the use of multi-group structural equation model-
ing (MGSEM; Jöreskog 1971; Chin 2004) or the inclu-
sion of interaction-term variables generated by the multi-
plication of construct items (Baron and Kenny 1986;
Kenny and Judd 1984). While these approaches can be
powerful for quantifying theoretically hypothesized
interactions, they imply that the decision to test for a
potential interaction among model variables remains
with the researcher. Even if a researcher successfully
identifies an interaction (or moderator) effect, other
interactions might remain untapped. As USM calculates
IE scores for each model construct accounting for the
potential interaction effect of any pair of model con-
structs on this construct, interaction effects within a pro-
posed structural model are systematically detected by
USM. In addition, once an interaction effect has been
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located, neither CVSEM nor PLS provide insights into
how this effect influences the dependent variable. How-
ever, the provision of surface graphics by USM informs
the researcher not only about the strengths of the interac-
tion effect, but also about how the two ‘independent’ var-
iables interact with regard to the ‘dependent’ variable. It
should be noted that potential moderating effects of other
variables not included in the model have to be tested with
USM using the same approaches as in PLS (Chin 2004).

3.2. Other Issues

Measurement error. A major difference between PLS
and CVSEM lies in the role assigned to theory versus
data and their respective role for the estimation results.
As Fornell (1989) illustrates, CVSEM favors the speci-
fied model over empirical correlations, “almost to the
point that it ‘overrides’ the data” (Fornell 1989, p. 165).
With CVSEM, observed data can be ‘explained away’ as
random noise, discrediting the observations to support
the theory (Fornell and Bookstein 1982). Using CVSEM,
Fornell (1989) finds for a model with two latent con-
structs each with two items which have pairwise correla-
tions between .11 and .26, a path coefficient between the
latent constructs of .87. Using the same data, he shows
that PLS calculates a path coefficient of .29, as the
method limits the distance of the results from the data,
preventing the analysis to go ‘beyond the data’ (Fornell
and Bookstein 1982). Related, PLS requires the latent
constructs to be constructed out of nothing else than their
measurement variables, while CVSEM draws data from
all measurement variables, generating “indeterminate”
latent measures (Chin and Newsted 1999; Tenenhaus et
al. 2005). As Fornell (1989, p. 165) states, “each
researcher must make a decision about the relative
weight that should be given to data vs. theory”. Consis-
tent with the approach of not testing a single ‘final’
model or theory, USM does not “defend” the structural
model suggested by the researcher as is the case with
CVSEM, but uses a similar data-driven approach to PLS.
Consequently, USM puts equal weight on theory and
data, preventing the results from being “overly far” from
the underlying correlations.

Distributional assumptions. While the maximum likeli-
hood optimization approach of CVSEM requires the data
to follow a multivariate normal distribution and indepen-
dence of the observations (although the method has been
shown to be relatively robust against violations of these
assumptions; Bollen 1989), no such requirements exist
for PLS as well as USM (see Fornell and Cha 1994). As
is the case with PLS, USM does not impose any distribu-
tional restrictions on the data except for predictor specifi-
cation, as the arguments on the distribution-free charac-
ter of PLS (Fornell and Cha 1994) can be applied equally
to USM.

Reflective vs. formative scales. Although CVSEM offers
researchers ways to include formative scales in a mea-
surement model by treating formative items as exoge-

nous manifest constructs, this procedure comes with sev-
eral limitations (MacCallum and Browne 1993). PLS, in
contrast, allows researchers to freely choose between
reflective and formative scales for each construct (Chin
and Newsted 1999). This is also true for USM which
uses the same approach as PLS with regard to formative
scales, namely running a multiple regression with the
measured data of the formative items as regressors and
the provisional latent variable score as regressand. The
only difference between PLS and UMS in the case of for-
mative constructs is the way the latent variable scores are
calculated (through Bayesian neural network estimation
instead of linear regression).

Sample size requirements. CVSEM requires a relatively
large sample to obtain stable results; absolute minimal
recommendations range from 200 to 800 (Chin and New-
sted 1999). PLS has less restrictive sample size require-
ments, which are often considered a major argument for
its use (Fornell and Bookstein 1982). As PLS considers
only a part of the available information for parameter
estimation, the minimum sample size for PLS is equal to
the largest number of parameters to be estimated in each
structural equation for reflective indicators (i.e., the larg-
est number of incoming paths for a model variable) or
each measurement equation and structural equation for
formative scales (i.e., the largest number of incoming
paths for a latent model variable or of formative items for
a construct). Applying the Bentler and Chou (1987) rule,
the sample size of a PLS model should be 5 to 10 times
that number to assure stable results (absolute minimal
recommendations range from 30 to 100 cases; Chin and
Newsted 1999). As USM also uses a “partial” optimiza-
tion approach and draws on the Bayesian framework, its
minimum sample size requirements are the same as for
PLS when the true relations are linear and additive.
Although nonlinearity and interactive effects always
require larger sample sizes, our experimentations give us
confidence to say that USM is able to model significant
levels of nonlinearity and interactions with sample sizes
of less than 250 cases.

Model complexity requirements. The CVSEM approach
is known to work best for models of low to moderate
complexity. For example, Chin and Newsted (1999) sug-
gest that CVSEM models should have less than 100 mea-
surement variables. If the complexity of a structural
model exceeds this level, CVSEM often produces illogi-
cal results such as negative variance estimates and load-
ings above one and encounters matrix inversion prob-
lems due to the method’s “overall” optimization
approach (Fornell and Bookstein 1982). In contrast, PLS
can also handle models with large complexity (up to 100
latent constructs and 1,000 items; Chin and Newsted
1999). The same can be said for USM, which can be used
to test equally complex models, but also works for
models of small or medium complexity. In the case of
USM, the time required for model estimation is actually
a more restrictive bottleneck than the number of con-
structs and items of a model because of the employed
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Figure 2: The De Wulf Model of Customer Loyalty

boosting approach (i.e., 30 replications). This is particu-
larly relevant when bootstrapping is employed, as this
requires a multiplication of each bootstrap run with the
number of replications (e.g., in the case of 200 bootstrap
samples, a total of 6,000 replications is needed).11

11 In the empirical applications described in this paper, the calcula-
tion time (including bootstrapping) was between one and three
hours per model.

4. Exploring Universal Structure Modeling
with synthetic data

To investigate how USM performs empirically, we apply
USM to different synthetic data sets and compare the
results with the confirmatory methods of CVSEM and
PLS. The objectives of this procedure are threefold.
First, we test whether USM can discover “true” nonlin-
ear structures and interactions among variables or if it
overfits the data. We address this issue with a data set
that contains different kinds of nonlinear relations and
interaction effects between latent variables. Second, we
test whether USM can discover linear relationships
among model constructs to a degree comparable to those
of the standard techniques of CVSEM and PLS. The high
flexibility of the method makes it particularly important
that USM does not overfit the data and detects nonlinear
courses when there are none. We address this issue by
generating a set of data that contains only linear model
paths. Third, we test whether the USM results fit a spe-
cific data set only or can be generalized (i.e., are valid)
across samples. Specifically, we replicate the USM
results for both the nonlinear and linear data sets with a
second sample. Because of the complementary nature of

the USM approach to confirmatory SEM methods, our
focus here is to demonstrate that USM generally is capa-
ble of providing stable and meaningful results rather than
to compare its performance directly with CVSEM and
PLS.

4.1. Estimating Nonlinear and Interactive Model
Relations with USM

Data generation. We generate synthetic data with known
parameter values and probability distributions for the
exogenous latent variables from the model by De Wulf,
Odekerken-Schröder, and Iacobucci (2001). The model
proposes four relationship marketing instruments (i.e.,
direct mail, preferential treatment, interpersonal commu-
nication, and tangible rewards) that may influence per-
ceived relationship investment, which in turn influences
relationship quality, which itself exerts an impact on cus-
tomer loyalty (see Figure 2; the USM specification
matrix appears in the Appendix). We use this information
to compute a set of data for the endogenous variables of
the model that contains both nonlinear relationships
between structural model variables and interaction
effects among them (Gentle 2003). We then turn USM
loose on the data to investigate how well the method dis-
covers the true structure and parameters.

Specifically, the data for the exogenous latent variables
follow a uniform distribution between 0 and 1; we
rescale them to values between 1 and 7, as described in
Equation 11:

MI = random(N) · 6 + 1, (11)

where MI is a relationship marketing instrument (i.e.,
direct mail, preferential treatment, interpersonal commu-
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Figure 3: USM Results for
Nonlinear Synthetic Data

Note: Only data points
above the surface in the
three-dimensional graphs
appear.
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 Nonlinear Data Linear Data

Model Construct 

USM

R
2
 CVSEM R

2*
PLS

R
2

USM

R
2

valid USM R
2
 CVSEM R

2*
PLS

R
2

USM

R
2

valid

PLS

R
2

valid

Perceived relationship 

investment

.92 - .038 .91  .61 .62 .60 .57 .57 

Relationship quality .79 - .409 .75  .75 .78 .75 .70 .70 

Customer loyalty .62 - .176 .58  .80 .80 .78 .75 .76 

  -         

Overall goodness of fit .865 - .448   .840 .839 .833   

*Model is empirically unidentified. 

Table 1: Fit Measures for Nonlinear and Linear Synthetic Data Set

nication, or tangible rewards), and N is the number of
synthetic cases generated. We set N to 2,000 and use 240
of the cases for the model estimation task and the other
1,760 for cross-validation. We prefer 240 against a larger
sample size because we consider it a realistic number for
empirical applications in marketing and consumer
research (it is also the mean of the two field samples used
in the next section).

Among the variables of the structural model, we specify
different kinds of nonlinear relationships and interactive
effects (Equations 12–14). Specifically, we model the
firm’s relationship investment as perceived by the cus-
tomer (PRI) as a function of the firm’s level of interper-
sonal communication (IC) and the extent of tangible
rewards offered to customers (TR):

PRI =
(IC · (14 – TR) + (14 – IC) · TR)2

1500
+ random(N) · 0.3

(12)
One independent variable (i.e., IC) has the strongest
effect on the dependent variable PRI when the other
independent variable (i.e., TR) is small, which represents
an interactive effect. We square the impact of IC and TR
on PRI to add a nonlinear element to the equation.

Next, we model the quality of the relationship as per-
ceived by the customer (RQ) as a function of PRI, IC,
and TR:

RQ = (PRI · 2 – 8)3 · .01 + IC · 0.005 + (TR – 4)2 · 0.2 +
3 + random(N) · 0.3 (13)

The impact of PRI on RQ is degressive up to the mid-
point of the scale (i.e., 4) and then becomes progressive.
Whereas IC has a weak linear effect on RQ, TR affects
RQ in a quadratic way so that the relationship takes a
U-shaped course.

Finally, we model customer loyalty (CL) as a function of
relationship quality, with the relationship between RQ
and CL taking an inverted U-shaped course:

CL = –(RQ – 4)2 + 6 + random(N) · 0.3 (14)

We then derive the data for the measurement variables
from the latent variables. We add normal distributed noise
and round the resulting values to the next integral number
that corresponds with the original 1–7 scale. Values less
than 1 are set to 1 and values greater than 7 are set to 7.

Model estimation and results. The USM estimation uses
a self-programmed software in the MATLAB environ-
ment and employs the 240 randomly drawn synthetic
cases. As we show in Table 1, USM explains 62–92% of
the variance of the three endogenous variables. The
OEAD values reported in Table 2 demonstrate that in all
cases, the variance explanation is caused by the “right”
variables (i.e., those specified to have an impact on the
respective outcome variable in Equations 12–14). Fur-
thermore, a visual inspection of the functions estimated
by USM (Figure 3) reveals that USM generally can iden-
tify the different kinds of nonlinear relationships in the
synthetic data set. The only exception is the quadratic
element of the PRI equation, which USM has difficulty
locating. When applying a bootstrapping routine with
200 subsamples (240 cases per sample), the OEAD
parameters of all specified effects are significant at p <
.05 (see Table 2). In addition, USM discovers the interac-
tion effect between IC and TR on PRI, as reflected in an
IE value of .09 which is statistically significant at p < .05
(t = 4.11).12

12 Here as well as in the other empirical studies, no interaction effect
apart from those mentioned in the text is significant. For reasons
of parsimony, we do not report IE values in the respective results
tables.

To cross-validate our USM results, we apply the USM
model functions to the 1,760 cases not used for the
model estimation. For this purpose, we derive values for
the latent variables (referred to as ytrue

1760) from the mea-
surement model parameters for each validation case and
calculate estimates for each of the three endogenous
latent variables (i.e., PRI, RQ, and CL) using the path
coefficients derived from the original 240 cases; these
estimates are named ŷ240. We then calculate a validation
coefficient Rvalid

2 for each of the three endogenous vari-
ables. In other words, Rvalid

2 represents the degree of vari-
ance of an endogenous variable in the validation sample
(n = 1,760) explained by other latent variables when we
use the model parameters from the original estimation (n
= 240). As we show in Table 1, the Rvalid

2 coefficients for
the three endogenous constructs are only slightly below
the degree of variance explained by the original data set
for the respective variables. Specifically, the Rvalid

2

parameter are only 1% (PRI) and 4% (both RQ and CL)
lower than the original R2 parameters. Therefore, USM
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Table 2: Path Estimates for Nonlinear and Linear Synthetic Data Set
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does not overfit the data, which warrants a generalization
of parameter estimates to those elements of the popula-
tion not used to estimate the model.

We also use the nonlinear synthetic data to estimate the
structural model with CVSEM (i.e., LISREL 8.5; Jöres-
kog and Sörbom 1993) and PLS (i.e., SmartPLS 2.3;
Ringle, Wende, and Will 2005). We acknowledge that
these methods are intended to analyze linear relation-
ships only, but we are interested in how the methods
react when confronted with nonlinear data and interac-
tions, because in practice, tests for linearity and interac-
tions rarely are conducted prior to applying CVSEM and
PLS to a data set. The results of our estimations also
appear in Table 1, which shows that the methods have
massive problems handling the data. In the case of PLS,
coefficients of determination clearly are lower than for
USM and the OEAD parameters appear arbitrary
(Table 2). As a consequence, the overall model GoF of
PLS is weaker than that of USM. In the case of CVSEM,
empirical identification problems emerge, such that the
full model produces path coefficients greater than 1 and a
model that contains only the specified paths cannot be
estimated as a result of matrix inversion problems.

4.2. Estimating Linear Model Relations with USM

Data generation. When generating the synthetic linear
data set, we use the same structural model and apply the
same procedure as in the case of the nonlinear data set.
That is, the data for the exogenous variables again
follow a uniform distribution between 0 and 1, rescaled
to values between 1 and 7 according to Equation 11. We
also randomly draw 240 cases from a synthetic data set
of 2,000 cases and use them for model estimation.
We derive the measurement variables from the latent
variables. In this investigation, all relationships of the
structural model follow a linear course. Specifically, we
consider the following relationships for PRI, RQ, and
CL:

PRI = 0.3 · DM + 0.55 · PT + 0.15 · IC + 0.02 · TR +
random(N),

(15)

RQ = PRI + random(N), and (16)

CL = RQ + random(N). (17)

Model estimation and results. In Table 1, we provide the
degree of variance of the three endogenous variables
explained by USM, and in Table 2, we list the OEAD
values and path coefficients generated by USM. The
results are consistent with the theoretical specifications
reported in Equations 15–17. All specified effects are
significant according to bootstrapping (200 subsamples),
with the single exception of the OEAD of IC on PRI,
which has a t-value slightly below 1.96. Similar to the
nonlinear case, we use the additional 1,760 cases to cal-
culate Rvalid

2 coefficients, which again are only slightly
lower than the R2s for the estimation data (4% for PRI;
5% for RQ and CL). Again, the USM results do not seem
seriously affected by overfitting.

We also analyze the synthetic data with CVSEM
(LISREL 8.5) and PLS (SmartPLS 2.3) and do not
encounter any identification problems. The degree of
explained variance of the endogenous variables is very
similar among all three methods, with CVSEM explain-
ing slightly more variance than USM and PLS. However,
the GoF, which balances the variance explanation and
measurement model fit, is slightly higher for USM than
for either CVSEM or PLS. The path coefficients and
OEAD parameters also are very similar (Table 2). All
significant path coefficients in CVSEM and PLS also are
significant in USM and no USM path is significant that is
insignificant in the other methods (cf. path from TR to
RQ, which is significant in PLS only; however, we do
not specify that this effect differs systematically from 0
in Equation 16). Although the USM t-values are some-
what smaller than those of CVSEM and PLS (i.e., higher
standard deviations in USM), the differences are limited
in size and do not affect the significance of any parame-
ter. Finally, we calculate Rvalid

2 coefficients for PLS to
compare the cross-validation results and report them in
Table 1 (LISREL does not allow for the calculation of
Rvalid

2 coefficients, because it does not provide manifest
values for latent constructs).13

13 We use PLSGraph 3.0 (Chin 2001) to calculate the cross-validation
measures, because SmartPLS does not provide location parameters.

The PLS Rvalid
2 coefficients

are almost identical to those calculated for USM, which
suggests that USM results are generalizable to a similar
extent as are PLS results.

5. Applying USM, PLS, and CVSEM To Field
Data

We now apply USM to two field data sets and compare
the results with PLS (SmartPLS 2.3) and CVSEM
(LISREL 8.5). In addition to the model by De Wulf,
Odekerken-Schröder, and Iacobucci (2001; hereafter, De
Wulf model), which we use for our synthetic data analy-
sis, we adapt a widely used model by Fornell and col-
leagues (1996; hereafter, Fornell model) that investigates
the drivers of customer loyalty. For each model and data
set, we summarize the main differences between USM
and the two confirmatory methods.

5.1. The De Wulf Model

Data and scales. The data set consists of survey data col-
lected from customers through mall-intercept personal
interviews (De Wulf, Odekerken-Schröder, and Iaco-
bucci 2001). We limit our analysis to one of six subsam-
ples, namely, data for apparel retailers collected in the
United States (n = 230). Originally, De Wulf et al. used
LISREL to analyze the data and all construct measure-
ments entail reflective multi-item scales. We retain all
scales unchanged, except for one CL item that we drop to
increase scale reliability. Alpha scores are greater than
.70 in all cases.
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Impact of on 

USM

(OEAD/

t-Value) USM (ß)

CVSEM

(OEAD)

CVSEM

(ß/t-value)

PLS
†

(OEAD)

PLS
†

(ß/t-value)

Theoretically Proposed Relations 

Direct mail Perceived 

relationship 

investment 

.102 (1.58) - .105 .220  (1.57) .137  / 

.135

.258** (2.94)/ 

.261** (2.88)  

Preferential

treatment

Perceived

relationship 

investment 

.007 (.36) .007 .052  -.108 (.91) .007/ .010  -.014 (.17)  / 

 -.020 (.25) 

Interpersonal

communication

Perceived

relationship 

investment 

.266**

(2.81)

.351 .201 .419** 

(3.80)

.182 / 

.174

.344** (3.86) / 

.335** (3.64)  

Tangible rewards Perceived 

relationship 

investment 

.093 (1.52) - .089  .185 (.94) .063  / 

.064

.119 (.94) / .124 

(.96)

        

Perceived 

relationship

investment

Relationship quality .352** 

(5.16)

- .591 .769** 

(13.15)

.431 / 

.221

.656** (17.05) / 

.424** (6.08)  

        

Relationship

quality

Customer loyalty .158** 

(4.78)

.496 .212 .461** 

(7.00)

.193 / 

.098

.439** (8.34) / 

.488** (4.88) 

Theoretically Unproposed Relations 

Direct mail Relationship quality .004 (.23) - n.i. n.i. n.i. / .055  n.i. / -.106 

(1.39)

Preferential

treatment

Relationship quality .009 (.34) .012 n.i. n.i. n.i. / .020  n.i. / .039 (.58) 

Interpersonal

communication

Relationship quality .111** 

(3.16)

- n.i. n.i. n.i. / .148 n.i. / .284** 

(3.80)

Tangible rewards Relationship quality .119* 

(1.75)

.155 n.i. n.i. n.i. / .114 n.i. / .219** 

(2.51)

        

Direct mail Customer loyalty .000 (.05) -.002 n.i. n.i. n.i. / .006  n.i. / -.031 (.31)

Preferential

treatment

Customer loyalty .031 (1.59) .161 n.i. n.i. n.i. / .048 n.i. / .237** 

(3.05)

Interpersonal

communication

Customer loyalty .011 (.09) -.086 n.i. n.i. n.i. / .025  n.i. / -.122 

(1.27)

Tangible rewards Customer loyalty .020** 

(2.10)

-.173 n.i. n.i. n.i. / .036  n.i. / -.180 

(1.47)

Perceived 

relationship

investment

Customer loyalty .009 (.04) .078 n.i. n.i. n.i. / .006  n.i. / .028 (.29) 

† Numbers before the slash refer to the theoretically proposed model; numbers after the slash to the full model.

** p < .05. * p < .10.

Notes: OEAD = Overall Explained Absolute Deviation; the OEAD values for CVSEM and PLS are calculated by dividing 

a path coefficient by the sum of path coefficients linked at the “dependent” construct and multiplying the outcome with 

the construct’s R2. ß = standardized path coefficient. n.i. = path was not included in model estimation. The t-values for 

PLS and USM are calculated by a bootstrapping routine with 200 samples.

Table 3: Results for the De Wulf Model

Comparison of results. In addition to testing the De Wulf
model, we also apply CVSEM and SmartPLS to the
“full” model (i.e., defined in the specification matrix S;
see the Appendix). We encounter empirical identification
problems when testing the full model with CVSEM. In
Table 3, we list the OEAD values and path coefficients
for USM, CVSEM, and PLS.

Significant paths in CVSEM and PLS generally also are
significant in USM and the OEAD values are generally
similar for all three estimation methods. However, the
OEAD of the path from PRI to RQ is higher in CVSEM
(.59) and PLS (.43) than in USM (.35), because USM
identifies two additional substantial paths that link to RQ
that are not included in the original model (i.e., “hidden”
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Figure 4: Nonlinear and Interactive Effects for the De Wulf and Fornell Models
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R
2

   AVE 

Model Construct CVSEM PLS USM 

Multiple

Regression CVSEM PLS USM 

Perceived relationship 

investment (3 items) 

.446 .389 

(.384)

.469 .378 .811 .876 

(.876)

.876 

        

Relationship quality (3 items) .591 .431 

(.558)

.595 .425 .715 .813 

(.814)

.810 

        

Behavioral loyalty (2 items) .212 .193 

(.219)

.230 .192 .731 .849 

(.842)

.822 

        

Direct mail (3 items) - - - - .814 .876 

(.876)

.850 

        

Preferential treatment (3 items) - - - - .724 .809 (.811) .876 

        

Interpersonal communication

(3 items) 

- - - - .735 .822 

(.823)

.813 

        

Tangible rewards (3 items) - - - - .775 .850 

(.851)

.818 

Overall goodness of fit        

CVSEM .562       

PLS  .533 

(.571)

     

USM   .601     

Notes: AVE = Average variance extracted. Numbers in parenthesis refer to the full model. 

Table 4: Fit Measures for the De Wulf Model

paths), namely, those from IC and TR to RQ. In other
words, USM reveals that PRI does not serve as a full
mediator of these two variables’ impact on RQ, as sug-
gested by the De Wulf model. Moreover, USM finds that
TR exerts a direct impact on CL that is not mediated by
PRI or RQ; thus, we learn that the original De Wulf model
specification exaggerates the impact of PRI on RQ.

To address the small sample size, we employ bootstrap-
ping as an alternative approach to cross-validation
(Cooil, Winer, and Rados 1987). The results provide fur-
ther evidence that USM does not overfit the data, in that
overfitting would have resulted in high standard devia-
tions and consequently a large number of insignificant
model parameters.

The results in Table 1 also illustrate that most of the
model relations are linear, consistent with the use of
CVSEM (and PLS). However, substantial nonlinearity
exists for two paths, namely, from IC to RQ (progressive
growth function) and from PRI to RQ (“buckled” func-
tion that takes a progressive course at PRI = 4); both
appear in the upper part of Figure 4. In addition, the
USM results show that IC and TR exert a relatively
strong interaction effect on PRI (IEIC/TR

PRI = .09; t = 10.05),
which is also visible in the upper part of Figure 4. We
thus learn that though PRI can increase through both IC
and TR when applied in isolation, the combined usage of

these instruments does not result in similarly higher
levels of PRI.

We offer the fit measures for all three methods in
Table 4. As a result of the inclusion of hidden paths, non-
linearity, and interactive effects, the R2 values for USM
are the highest of all three endogenous constructs, fol-
lowed by CVSEM and PLS. The higher variance expla-
nation of USM compared with CVSEM has particular
interest, because USM (cf. CVSEM; see Bagozzi and Yi
1994; Fornell 1989) does not “overwrite the data” and
therefore can be viewed as a more conservative estimator
in terms of inner-model variance explanations.14

14 This characteristic of CVSEM becomes most clearly visible in the
link between PRI to RQ, for which the CVSEM path coefficient
(.77) exceeds the correlation between construct means (.65).

This
greater closeness of USM to the raw data also appears in
the average variance extracted (AVE) scores in Table 2,
which reveal that the USM AVEs are consistently higher
than the CVSEM AVEs (and as high as the PLS AVEs).
The overall model fit (measured by GoF) is highest for
USM.

5.2. The Fornell Model

Model, data, and scales. This model, the conceptual
framework behind the American Customer Satisfaction
Index (ACSI; Fornell et al. 1996), proposes that cus-
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Impact of on 

USM

(OEAD/

t-value) USM (ß) 

CVSEM

(OEAD)

CVSEM

(ß/t-value)

PLS
†

(OEAD)

PLS
†

(ß/t-value)

Theoretically Proposed Relations 

Expectations Perceived quality .194** 

(5.30)

.440 .215  .464** 

(6.78)

.191 / 

.191

.437** (6.68)  / 

.437** (7.08) 

        

Expectations  Perceived value .022 

(1.27)

- .009  -.014 (.23) .026 / 

.026

.047 (.71) / .047 

(.70)

Perceived quality Perceived value .327** 

(7.89)

.564 .449  .683** 

(7.53)

.319 / 

.319

.565** (7.87) / 

.565** (8.06) 

        

Expectations Customer satisfaction .007 (.60) - .035  -.042 (.91) .014 / 

.014

.019 (.43) / .019 

(.44)

Perceived quality Customer satisfaction .514** 

(9.41)

.618 .649  .785** 

(8.07)

.490 / 

.490

.661** (12.72) / 

.660** (12.58) 

Perceived value Customer satisfaction .141** 

(4.17)

.225 .183  .221** 

(3.34)

.159 / 

.159

.214** (3.74) / 

.215** (3.64) 

        

Customer

satisfaction

Complaint handling .181** 

(3.12)

.314 .355  .596** 

(8.59)

.279 / 

.131

.528** (9.89) / 

.286** (2.87) 

        

Customer

satisfaction

Customer loyalty .382** 

(6.30)

- .612  .779** 

(6.57)

.383 / 

.273

.610** (9.68) / 

.509** (5.03) 

Complaint

handling

Customer loyalty .101** 

(2.87)

.119 .020  .026 (.39) .058 / 

.045

.092 (1.64) / 

.084 (1.38) 

Theoretically Unproposed Relations 

Expectations Complaint handling .000 (.01) - n.i. n.i. n.i. / 

.032

n.i. / -.070 

(1.12)

Perceived quality Complaint handling .152** 

(3.32)

.261 n.i. n.i. n.i. / 

.151

n.i. / .331** 

(3.15)

Perceived value Complaint handling .011 (.50) - n.i. n.i. n.i. / 

.005

n.i. / .007 (.08) 

        

Expectations Customer loyalty .004 (.42) - n.i. n.i. n.i. / 

.014

n.i. / .027 (.45) 

Perceived quality Customer loyalty .004 (.21) - n.i. n.i. n.i. / 

.019

n.i. / -.036 (.38) 

Perceived value Customer loyalty .053 

(1.23)

- n.i. n.i. n.i. / 

.105

n.i. / .196 (1.61)

† Numbers before the slash refer to the theoretically proposed model; numbers after the slash to the full model.

** p < .05. * p < .10.

Notes: OEAD = Overall Explained Absolute Deviation; the OEAD values for CVSEM and PLS is calculated by dividing a 

path coefficient by the sum of path coefficients linked at the “dependent” construct and multiplying the outcome by the 

construct’s R2. ß = standardized path coefficient. n.i. = path was not included in model estimation. The t-values for PLS 

and USM are calculated by a bootstrapping routine with 200 samples.

Table 5: Results for the Fornell Model

tomer satisfaction results from customers’ expectations,
perceived quality, and value perceptions and in turn
influences perceptions of loyalty and complaint handling
(see Figure 5; the USM specification matrix is in the
Appendix). We use a random sample of 250 customers of
a mobile phone provider, whose data were collected
through personal CATI telephone interviews.15

15 This data set is freely available for academic purposes from the
SmartPLS Web site (http://www.smartpls.de).

Previ-
ously, PLS has been used to analyze the customer satis-
faction index data (Fornell 1992; Fornell et al. 1996).

Except for complaint handling and expectations, which
are operationalized with a single item, all construct mea-
surements use reflective multi-item scales (Tenenhaus et
al. 2005), with alpha scores greater than .70.16

16 The item for complaint handling is: “How well or poorly was your
most recent complaint handled?” (respondents who had com-
plained within the last 12 months) or “How well do you expect the
company to handle a potential complaint?” (all other respondents).
For expectations, we delete two of the original three items because
of their low scale reliability and use only the item, “Expectations
for the overall quality of [mobile phone provider] at the moment
you became a customer of this provider.”
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R
2

AVE 

Model Construct CVSEM PLS USM 

Multiple

Regression CVSEM PLS USM 

Perceived quality (7 items) .215 .191 

(.191)

.194 .190 .506 .577 

(.577)

.574

        

Perceived value (2 items) .458 .345 

(.345)

.349 .323 .720 .849 

(.849)

.845

        

Customer satisfaction (3 items) .866 .663 

(.663)

.663 .654 .563 .693 

(.693)

.680

        

Customer loyalty (2 items) .632 .441 

(.457)

.544 .390 .576 .762 

(.767)

.761

        

Complaint handling (1 item) .355 .279 

(.317)

.344 .280 1.00 1.00 

(1.00)

1.00

        

Expectations (1 item) - - - - 1.00 1.00 

(1.00)

1.00

Overall goodness of fit        

CVSEM .557       

PLS  .522 

(.529)

     

USM   .582     

Notes: AVE = Average variance extracted. Numbers in parenthesis refer to the full model. 

Table 6: Fit Measures for the Fornell Model

Comparison of results. Again, we apply CVSEM and
PLS to both the original model and the “full” model. As
in the case of the De Wulf model, testing the full model
is possible only with PLS. The OEAD values, path coef-
ficients, and significance levels for the customer satisfac-
tion model with all three methods appear in Table 5.
Similar to our previous analysis, all relationships found
significant by CVSEM and PLS are also significant in
the USM estimation and vice versa. The only exception
is the path from complaint handling to customer loyalty,
which is only significant in the USM estimation (but
close to significance in PLS). Thus, USM again does not
overfit the data but instead provides stable and generaliz-
able estimates. Moreover, we again find that the original
model structure is incomplete. Specifically, the USM
results show that customers’ evaluations of complaint
handling are influenced by not only satisfaction with the
service but also the service quality perceived by the cus-
tomer. This relationship is significant and strong, with an
OEAD of .15. As a result, the impact of satisfaction on
complaint handling is overestimated by the original
model specification, which does not include this path.

Once more, USM reveals some hidden nonlinear and
interactive model relations. With regard to nonlinearity, as
we show in the lower part of Figure 4, satisfaction affects
loyalty in a nonlinear way, following a degressive growth
function, a finding consistent with previous research
(Hennig-Thurau and Klee 1997; Zeithaml, Berry, and

Parasuraman 1996). The existence of an interaction effect
of customer value and satisfaction on customer loyalty,
which is relatively strong and significant (IEVal/Sat

Loy = .14; t
= 8.49), also is visible in Figure 4 (see also Agustin and
Singh 2005). The three-dimensional interaction surface
graphic illustrates that a saturation level exists for the
effect of satisfaction on loyalty; after a critical level of
loyalty, an increase in satisfaction does not transform into
higher loyalty rates. As we can derive from the interaction
graphic, this saturation level is lower when customer
value is small and higher when that value is high. In other
words, high loyalty can be achieved only when the cus-
tomer is both highly satisfied with a product and assigns a
high value to it. Another significant (though slightly
smaller) interaction effect emerges between satisfaction
and complaint handling, which influences customer loy-
alty (IESat/Comp

Loy = .06; t = 10.78). Specifically, if satisfaction
is high, increased complaint handling does not lead to
higher loyalty, whereas when satisfaction is low, com-
plaint handling exerts a positive impact on loyalty.

The CVSEM-OEAD scores are substantially higher for
several model paths than the PLS-OEAD and USM-
OEAD scores (Table 6), because CVSEM assumes the
structural model is correct and interprets measurement
error in favor of the model (Fornell and Bookstein 1982).
However, the GoF (which combines structural model and
measurement model accuracy) is highest for the USM
solution. When comparing the GoFs of USM and PLS
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for the full model, the variance explanation and overall
model fit remain highest for USM.

5.3. Discussion: Identifying Hidden Paths,
Nonlinearity, and Interactions in Field Data

Our application of USM, CVSEM, and PLS to two field
data sets carries important implications for testing struc-
tural models in marketing and related disciplines. We find
that USM can identify different kinds of theoretically
unproposed model structures, which we believe may help
marketing researchers develop better structural models,
namely “hidden” paths, nonlinearity, and interactions.

Hidden paths. In both field data sets, we find theoreti-
cally unproposed relationships among the model vari-
ables, whose inclusion changes the relative strength of
other relationships. As a consequence, some of the
results gained through confirmatory SEM methods
overestimate the strength of some construct interrela-
tions while overlooking others. As is the case for the De
Wulf model, the USM results show that the proposed
fully mediating role of perceived relationship invest-
ment, which is confirmed by LISREL, should be recon-
sidered.

Hidden nonlinearity. We find nonlinear interrelationships
in both the De Wulf and the Fornell models, which are
overlooked by CVSEM and PLS. When data contain
nonlinear paths, a potential consequence of using tradi-
tional SEM methods is the erroneous rejection of
research hypotheses. This issue has obvious importance
for marketing.

Hidden interactions. In both field data sets used herein,
we find significant interaction effects among model vari-
ables that were not theoretically proposed. Although
these interactions differ in strength, their omission would
distort the results of CVSEM and PLS structural model
testing and, similar to an omission of model paths or
nonlinear relations, could lead researchers to draw mis-
guided conclusions.

6. Implications for Marketing Research:
How to use USM

We believe that as marketing researchers, we should be
aware that when we test a structural model, our knowl-
edge is not always sufficient to exclude alternative expla-
nations and the existence of hidden structures. Although
the two field data sets used herein do not represent a
random sample of academic studies in marketing, our
analyses suggest that the existence of hidden structures is
a regular circumstance in the discipline. This commonal-
ity generates the need to complement widely used confir-
matory methods of structural model testing with explor-
atory methods that can identify hidden structures. We
introduce Universal Structure Modeling (USM) as a can-
didate for such exploratory analyses of structural models
in marketing.

Using two sets of synthetic data and two field data sets,
we demonstrate that USM provides stable and reliable
estimates and does not overfit the data. When confronted
with a fully linear data set that contains no interactions,
USM results are similar to those of traditional SEM
methods. Furthermore, USM can identify in an explor-
atory sense

) Interrelationships among model variables that are not
expected by the researchers,

) The nonlinear character of model paths that has not
been theoretically predicted by researchers, and

) Interactive effects of two model variables on other
variables of the model that are not anticipated by
researchers.

Accordingly, we believe that researchers who plan to test
a structural model can benefit from complementing tradi-
tional SEM methods with USM. Specifically, USM
might serve as a “forerunner” of more restrictive meth-
ods to explore the potential existence of theoretically
unexpected effects. If USM does not identify hidden
structures, researchers might replicate the USM findings
with traditional SEM methods such as CVSEM and PLS.
Although USM performs adequately when exposed to a
linear data set, we recommend the use of confirmatory
methods, such as CVSEM and PLS, when the linearity of
the model relations is assured.

If USM locates hidden structures, the appropriate reac-
tion differs depending on the kinds of structures
revealed. In the case of hidden paths, researchers might
go back to their theoretical model development and
determine whether they can justify additional paths by
the theories underlying the proposed model and, if so,
incorporate the new paths into the model. Such a recur-
sive procedure should be reported. If USM finds a non-
linear path, however, researchers might try to transform
their data to allow for a traditional model test with PLS
or CVSEM with nonlinear effects (e.g., logarithmic
transformation). Please note that this approach is only
possible if no other (e.g., linear) relations are affected by
the transformation. Of course, theoretical arguments
should support such a nonlinear relationship to avoid
atheoretical data-driven model development.

Finally, if interactions among model constructs emerge
from USM, we recommend that researchers who want to
replicate USM results with CVSEM and PLS should incor-
porate the interactions into their model. In both methods,
certain interactions can be incorporated through multi-
group analysis or the inclusion of interaction terms. Again,
these model extensions should be accompanied by a dis-
cussion of the theoretical mechanisms underlying the inter-
action effects. In summary, USM can contribute to an
improved theory development process in marketing by
combining exploratory and confirmatory elements. The
method offers the potential to highlight weaknesses in the-
oretical model developments and can help prevent model
misspecifications and misleading results.
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Some aspects and limitations of USM require additional
research. One of them is the effect of sample size on the
stability of USM results. Similar to PLS, USM uses a
“partial” optimization approach but draws on the Bayes-
ian neural network framework, so its minimum sample
size requirements are basically the same as those for PLS
when the true relations are linear and additive (i.e., 5–10
times the largest number of incoming paths for a latent
model variable or formative items for a construct; Bent-
ler and Chou 1987). Although nonlinearity and interac-
tive effects require larger samples, our experiments give
us the confidence to state that USM can locate nonlinear-
ity and interactions with sample sizes of less than 250
cases. The version of USM introduced herein is limited
insofar as the measurement model only allows for linear
relations between latent variables and manifest items.
Extending the flexibility of the structural model to the
measurement model would be desirable, because it might
increase the explained variance in a model. Although we
show that models exist in marketing research that contain
hidden paths and would benefit from the use of USM, we
cannot provide insight into the extent of these misspecifi-
cations in marketing science. We consider this point
another challenge for further research. Finally, more
extensive testing is necessary to explore the full power of
USM and identify potential limitations.
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